math-advanced-euclidean-algorithm.html


* created: 2025-11-29T20:35
* modified: 2025-11-29T23:01

title

Advaced Euclidean Algorithm

description

Used to calculate the $gcd(a, n)$ and the multiplicative inverse of $a$, with $a \in \mathbb{Z}^{*}_{n}$

Advanced Euclidean Algorithm

Used to calculate the gcd(a, n) and the multiplicative inverse of a \mod n, with a \in \mathbb{Z}^{*}_{n}, meaning, it calculates both s and t, for the values a and n:

gcd(a,n)= n \cdot s + a \cdot t

For n = 73 and a = 56 we get:

\cdot 73 \cdot 56 q
73 \; (n) 1 0 73 = 1 \cdot 73 + 0 \cdot 56
56 \; (a) 0 1 1 56 = 0 \cdot 73 + 1 \cdot 56
17 1 -1 3 17 = 1 \cdot 73 - 1 \cdot 56
5 -3 4 3 5 = -3 \cdot 73 + 4 \cdot 56
2 10 -13 2 2 = 10 \cdot 73 - 13 \cdot 56
1 -23 30 2 1 = -23 \cdot 73 + 30 \cdot 56
0

The gcd(73, 56) = 1 and the multiplicative inverse of a is 30, because: 1 \equiv -23 \cdot 73 + 30 \cdot 56 \pmod{73}